
マルチデバイス対応について

DEAUアカデミー

レスポンシブWEBデザイン（RWD）
「レスポンシブWEBデザイン」と検索すると
「レスポンシブWEBデザイン（Responsive WEB Design）」は、PC、タブレット、スマートフォンなど、デバイスの
画面サイズよってResponsive=反応するWEBデザインという意味で、WEBサイトを単一のHTML（ワンソース）で実現
する制作手法です。ブラウザのスクリーンサイズを基準にCSSでレイアウトすることで、デバイスごとに専用サイトを
用意すること なく、マルチスクリーンに対応したWEBサイトを制作できます。

ギュ！っとした説明です。

【メリット】
・1つのHTMLファイルで複数デバイスに対応できる。
・更新・修正やサイト制作の作業工数の軽減出来る。
・各デバイスのURL統一化SEO対策に効果的になる。

【デメリット】
・設計やデザインが複雑になる。
・PCとモバイルの内容が同じなので、ページの読み込みが重くなる可能性がある。
・常に新しいデバイスの登場に対応が必要になる。

レスポンシブWEBデザインは様々なデバイスに対応出来るので多くのサイトで採用している技術です。

まずは歴史を見てみましょう。

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

● 2007年、アップルが米国で「iPhone（アイフォーン）」を発売

● 2017年「iPhone X」を発売

● 2008年1月22日、HTML5ドラフト（草案）が発表

● 2011年6月 Cascading Style Sheets, level 2 revision 1 (CSS 2.1), 勧告
● 2011年6月 Cascading Style Sheets, level 3 (CSS3) 勧告

● 2012年6月Media Queries, 勧告

● 2014年10月28日、HTML5 が勧告

● 2017年12月14日、 HTML 5.2 が勧告

● 2016年11月1日、 HTML 5.1 が勧告

● 2008年、米国でAndroid OSを搭載したT-Mobile G1が発売

● 2015年 4月21日 Googleがモバイルフレンドリーの使用を開始

最新情報 2018年1月18日 2018年7月よりページの読み込み速度をモバイル検索のランキング要素として使用することを発表

最終草稿 勧告候補 勧告案 W3C勧告
W3Cの定める規格

作業草案に戻すべきかの判断前
無くなることがあります

実装を呼びかける段階
ベンダープレフィックスは外すことを推奨

いよいよ準備ができましたという段階
ほぼ、もう変更ないかと

理論面でもOK！実用面でもOK！

作業草稿
最初の草案段階

ベンダープレフィックスで利用可能

そのポイントは大きく分けて
「４」つです。

Viewport Media Queries

UI/UXBox model

Viewport
「 viewport 」と検索すると
viewport（ビューポート）とは、日本語に訳すと「表示領域」という言葉がしっくりくると思います。 例えば、
デスクトップ環境（PCなど）のブラウザなどでは、ブラウザウインドウの表示領域がviewportになります。 ... 表
示のされ方は、制作者がmeta要素のviewportで指定することができます。

ギュ！っとした説明です。
このMetaタグを入れると、デバイスの画面サイズに合わせた数値で表示されるようになります。
・いまのところパターンは数えるほど
・コピペして使う事が多いのか現状
・実機検証を最後に忘れずに

【記述例】
<meta name="viewport" content="width=device-width,initial-scale=1.0,viewport-fit=cover">

Media Queries
「 Media Queries 」と検索すると
メディアクエリは、CSS スタイルに適用できるシンプルなフィルタです。 メディアクエリを使用すると、画面の
種類、幅、高さ、向き、解像度など、コンテンツをレンダリングするデバイスの特性に基づいて、スタイルを容
易に変更できます。

ギュ！っとした説明です。
CSSをデバイスの画面サイズ毎に内容を変えられます。
・使うコツは整理整頓
・初期値の把握
・複雑にしない
【制作作業時のコツ】
バックアップ必須！（復活の呪文を唱えられるように）
行き当たりばったり絶対ダメよ～！

【記述例】
body{

background: #000000;
}

@media only screen and (max-width: 1280px){
body{

background: #333333;
}

}
@media only screen and (max-width: 960px){

body{
background: #666666;

}
}

@media only screen and (max-width: 640px){
body {

background: #999999;
}

}

「max-width」の場合は大きいサイズから

【ブレイクポイントの設定のポイント！】

・メディアクエリは同じものだけ使う
・ブレイクポイントは同じ数値で切り分ける
・記述箇所はセレクタの直下が好ましい
・プロパティと値は出来るだけ統一する
・「.css」のファイルは1ファイルが理想
・インデント・{}をしっかり揃える
・そもそもHTML文書に無理が無いのかを確認

「min-width」は逆にスマートフォンサイズ
から作成するのであればコチラ

他にも書き方色々あるので、これに慣れたら
必要に応じて書いてみるのも良いかも？！

CSSセレクタの優先順位の計算方法

指定方法 例 点数

タグのstyle属性 style="" 1000点

id #hoge 100点

class .hoge 10点

擬似クラス a[href*="google"] 10点

要素名 ul 1点

擬似要素 :first-child 1点

全称セレクタ * 0点

CSSの点数計算を解りやすく整理してみましょう。
HTML文書の、「id・class」は計画的に整えておくことで、誤った指定を回避できます。

例 計算 合計点

style="" 1000(style属性) 1000点

#hoge 100(ID属性) 100点

li.color.label 1(要素名) + 10(クラス属性)
+ 10(クラス属性) 21点

table tr td.color 1(要素名) + 1(要素名) +
1(要素名) + 10(クラス属性) 13点

div + *[href$="com"] 1(要素名) + 0(全称セレク
タ) + 10(擬似クラス) 11点

h1 div + span 1(要素名) + 1(要素名) +
1(要素名) + 10(クラス属性) 3点

li:last-child 1(要素名) + 1(擬似要素) 2点

計算例

CSSの点数計算記述ルールの確認

Box model
「マルチデバイス対応」のサイトの特徴は固定値からの解放です。

ギュ！っとした説明です。

【ボックスモデルに関わるセレクタ】
☑ width ☑ border☑ padding ☑ margin

横幅の合計値をデバイスの画面幅（100%）を超えなければ、横スクロールのバーは出ません！

☑ height

【ボックスをレイアウトさせるセレクタ】
☑ float ☑ clear ☑ position ☑ overflow ☑ display

ボックスモデル

width
（max-width）
（min-width）

margin-left border-left border-rightpadding-right margin-rightpadding-left

合計値をデバイスの画面幅（100%）

width
【主な内容】
初期値はauto
数値と%の指定が可能
負の値は指定できない
HTMLのテキスト、画像（img）の適用される箇所

・デザインの都合が可能な限り「％」を使用しましょう。
・「max-width」「min-width」は便利

ポイント！

height
【主な内容】
初期値はauto
数値と%の指定が可能
負の値は指定できない
HTMLのテキスト、画像（img）の適用される箇所

・デザインの都合が可能な限り「初期値」にしましょう。
・「width」と違い、「％」は使い難い。

ポイント！

padding
【主な内容】
上下左右まとめての指定が可能
数値と%の指定が可能
負の値は指定できない
CSSでbackgroudが適用される箇所

・「box-sizing: border-box;」を使えばだいたい解決するかも
・数値を入れれば絶対に余白を持ちます。（逆に効かない場合は別の何かが間違っています。）
・背景「backgroud 」に画像を持たせる時に有効
・余白の取り方に悩んだらpaddingで指定すると良いかも？！

ポイント！

margin
【主な内容】
上下左右まとめての指定が可能
数値と%の指定が可能
負の値が指定できる
CSSでbackgroudが適用されない箇所

・「marginの相殺」がややこしい
・「ネガティブマージン」がややこしい
・「他のセレクタとの関係性」がややこしい
・CSSが嫌わる原因はこれ…だが、理解すると自由自在のレイアウトが可能

ポイント！

border
【主な内容】
ボーダーのスタイル・太さ・色の指定が可能
上下左右まとめての指定が可能
数値と%の指定が可能
負の値は指定できない
初期値で「backgroud」を含む箇所だが、「box-sizing」で調整可能

・「box-sizing: border-box;」を使えばだいたい解決するかも
・後で、横スクロールの原因探しで最後まで見つからない事が多いのがコレ

ポイント！

float
【主な内容】
初期値はnone
floatプロパティは、指定された要素を左「left」または右「right」に寄せて配置
ただし、左か右にしか配置出来なくなり中央に揃わなくなる
その他、特殊な仕様が多々ある

・使わない時は「none」にする。（これはよく使います。）
・コーディングで一番悩ましい存在、極力使わないというのがコツかも？！
・「float」したら「 clear 」を徹底する
・横並びになれば、横並びの合計値になるので、ボックスの数値をしっかり把握してみましょう。
・ややこしいが「 float 」が自在に使えればどんなレイアウトも自由自在
・「ネガティブマージン」と合わせたら更に強力！

ポイント！

clear
【主な内容】
初期値はnone
「float」プロパティの回り込みを解除する。
「float」と「 clear 」はセットで考えると良いかも

・値に「left」「right」あるが一緒なので使うなら「both」
・使わない時は「none」にする。（これはよく使います。）

ポイント！

position
【主な内容】
positionプロパティは、ボックスの配置方法（基準位置）が、相対位置「relative」絶対位置「absolute」
を指定出来る。表示位置の指定には「top」「bottom」「left」「right」を併用して、基準位置からの距離
を設定する。
数値と「％」の値、負の値が使用可能 初期値は「 static 」
絶対位置への配置でスクロールしても位置が固定の「fixed」

・ヘッダーの固定や、ページトップへのボタンの固定に便利
・2つのセレクタを併用しなければならないのでややこしい
・負の値や、親子関係のがややこしい
・ややこしいが「 position 」が自在に使えればどんなレイアウトも自由自在
・「float」「ネガティブマージン」と合わせたら更に超強力！

ポイント！

overflow
【主な内容】
overflowプロパティはボックスの範囲内に内容が入りきらない場合に、はみ出た部分の表示の仕方を指定する。
初期値はvisible
autoはブラウザ依存があります。

・まず「float」の親要素に「overflow: hidden;」が便利
・タッチデバイスのスクロールは操作しにくい
・初期値は「 overflow: visible;」と「height:auto;」で縦長のページは、スマートフォンならOK！？

ポイント！

display
【主な内容】
displayプロパティは、ブロックレベル・インライン等の、要素の表示形式を指定する際に使用
inlineは（横幅の絶対値を持てない）
blockとinline-blockは（横幅の絶対値を持てる）
noneは要素が表示を隠す事が出来てしまう。

・要素の横並びの箇所（グローバルナビ等）には必須
・非表示「 display :none;」の扱いには要注意
・表組「table」の解体に必要

ポイント！

インライン
「display:inline;」

インラインブロック
「display:inline-block;」

ブロック
「display:block;」

主な用途 文章内 文章内、横並び レイアウト、サイズ調整

主なタグ a,storong,span img h1,p,ul,li,div

並び方 横 横 縦

初期サイズ 内容サイズ 内容サイズ 横は100%、縦は内容

widthとheight - 指定可能 指定可能

padding 上下左右
※余白はとってくれるが、上下の要素の位置には影響しない

上下左右 上下左右

margin 左右のみ 上下左右 上下左右

line-height 外側にかかる 内側にかかる 内側にかかる

text-align - 指定可能 指定可能

vertical-align 指定可能 指定可能 -

インライン要素とインラインブロック要素とブロック要素の違い

UI/UX
「 UI/UX」はデザイナーの腕の見せ所です！
さまざまデバイスに対応したコンテンツを作るには、環境・時間・空間・性別・年齢・人数…等々
それらを「User Interface：ユーザインターフェイス」や「User Experience：ユーザエクスペリエンス」と
いう言葉で表現されています。ここで活きるのは「体験という経験」になるでしょう。

ギュ！っとした説明です。
「使い易い」「役に立つ」「解りやすい」をポイントにデザイン設計を考えてみましょう。
・タッチデバイスを意識したボタン（リンク）
・迷子にさせない導線
・ページの表示スピード対策「画像」
・ページの表示スピード対策「プログラム」
・使い易さの追求

タッチデバイスを意識したボタン（リンク）
■タッチデバイスではボタンの領域を広く取りましょう。
～の要素タグはインライン要素になります。
その為、幅と高さを持たせる為に「 display :block;」を上手く活用してみましょう。

■ポインターが無いので、リンク箇所のデザインルールを変えてみましょう。
サイト全体でテキストリンクの箇所は「このデザイン」というルールを統一しリンクが付いていることを
解りやすくしてみましょう。

■リンクの付いたバナーデザインはより解りやすく
画像で作るバナーは、よりクリックしたら詳しい説明のページへ飛んでいくと解りやすく
デザインしてみましょう。

迷子にさせない導線
■画面の面積が少ないデバイスでは、解りやすい導線を組みましょう。
サイト設計の段階で、無駄なリンク無駄なページは排除するのが理想です。
PCの特性、スマートフォンの特性を考えレイアウトを設計してみましょう。

■ 1クリックの動作で、1割のユーザーが離れると言われています。
無駄なページ移動はお客様が離れるだけです。スマートフォンやタブレットで縦に長いページは、
そんなにストレスを感じさせないハズなので、1ページの内容（ストーリー）を充実させましょう。

■ ファーストビューで「最優先のコンテンツ」フッターで「各ページ」へ
ページを開いて最初に見えるのが「目的の内容」⇒深く読み進めて「次への誘導」
そこに興味のない方には「他の興味」へご案内出来るようにしてみましょう。

ページの表示スピード対策「画像」
■ Retinaディスプレイや４Kテレビ等々への対応
Retinaディスプレイの場合解像度が2倍になるので、2倍のサイズの画像を用意し50%のサイズで指定をして
画像は表示させましょう。ただし容量には要注意です！

■ imgとbackground-imageの違いを確認しましょう。
「img」要素はHTMLの文章構造で存在する意味が必要になります。
「background-image」は背景のCSSなので、文法上の意味はありません。上手く使い分けてみましょう。

■Webアイコンや「canvas」「SVG」を上手く取り入れましょう
「jpg,gif,png」以外の画像表示やコンテンツが実装出来る段階に入って来ているので、
上手く取り入れてみましょう。
ただし、実機検証やブラウザ依存には要注意です！

ページの表示スピード対策「プログラム」
■動的プログラムは表示スピードを低下させます。
JavaScriptはとても便利！…ですが、プログラムとしてはページの表示速度を低下させます。
ユーザビリティ、アクセシビリティという部分を考えて最低限の利用方法を考えてみましょう。

■ CMS等のテンプレートについて
簡単にWEBサイトを作成してくれるというツールがあったら理想的ですが、便利な分「何かしらの処理」を
行われている場合、表示スピードに影響します。良く確認をしてから利用していきましょう。

■ 誤ったプログラムも表示スピードの低下に繋がります。
HTMLやCSSの記述が誤っていてもブラウザは独自解釈して表示してくれます。
これも表示スピードの低下に影響しますし、SEO（検索エンジン対策）にもマイナスの影響がでます。
検証サイト等を利用し、正しく記述できるよう頑張りましょう！

使い易さの追求
■ WEBフォントの利用
日本語に対応したWEBフォントも多く出てきました。無料で使える「源ノ角ゴシック」「源ノ明朝」が
国内でも多く広まって来ています。上手く取り入れてみましょう。

■ jQuery の利用
HTML5やCSS3でまだ実現できない動きはまだまだあります。
ページを重くするという問題はありますが、それよりも優先すべき「使い易さの追求」なのであれば、
上手くjQueryを取り入れてみましょう。

■ Googleアナリティクスの利用
ページのアクセス数や表示スピード、滞在時間等のデータを取得出来るGoogleアナリティクスは無料で
利用することが出来ます。数字から解析しより良いコンテンツを作成しましょう。

	マルチデバイス対応について
	レスポンシブWEBデザイン（RWD）
	まずは歴史を見てみましょう。
	スライド番号 4
	そのポイントは大きく分けて�「４」つです。
	Viewport
	Viewport
	Media Queries
	スライド番号 9
	スライド番号 10
	Box model
	ボックスモデル
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	スライド番号 21
	スライド番号 22
	インライン要素とインラインブロック要素とブロック要素の違い
	UI/UX
	スライド番号 25
	スライド番号 26
	スライド番号 27
	スライド番号 28
	スライド番号 29

